\(\int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{9/2}} \, dx\) [17]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 48 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{9/2}} \, dx=\frac {\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{6 a c f (c-c \sin (e+f x))^{7/2}} \]

[Out]

1/6*cos(f*x+e)*(a+a*sin(f*x+e))^(5/2)/a/c/f/(c-c*sin(f*x+e))^(7/2)

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {2920, 2821} \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{9/2}} \, dx=\frac {\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{6 a c f (c-c \sin (e+f x))^{7/2}} \]

[In]

Int[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(3/2))/(c - c*Sin[e + f*x])^(9/2),x]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(6*a*c*f*(c - c*Sin[e + f*x])^(7/2))

Rule 2821

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] /; FreeQ[{a, b, c, d, e, f
, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[m, -2^(-1)]

Rule 2920

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {(a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{7/2}} \, dx}{a c} \\ & = \frac {\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{6 a c f (c-c \sin (e+f x))^{7/2}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(110\) vs. \(2(48)=96\).

Time = 3.65 (sec) , antiderivative size = 110, normalized size of antiderivative = 2.29 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{9/2}} \, dx=-\frac {a (-5+3 \cos (2 (e+f x))) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \sqrt {a (1+\sin (e+f x))}}{6 c^4 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-1+\sin (e+f x))^4 \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(3/2))/(c - c*Sin[e + f*x])^(9/2),x]

[Out]

-1/6*(a*(-5 + 3*Cos[2*(e + f*x)])*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*Sqrt[a*(1 + Sin[e + f*x])])/(c^4*f*(
Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x])^4*Sqrt[c - c*Sin[e + f*x]])

Maple [A] (verified)

Time = 0.28 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.48

method result size
default \(\frac {a \left (\cos ^{2}\left (f x +e \right )-4\right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \tan \left (f x +e \right )}{3 f \left (\cos ^{2}\left (f x +e \right )+2 \sin \left (f x +e \right )-2\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, c^{4}}\) \(71\)

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(9/2),x,method=_RETURNVERBOSE)

[Out]

1/3/f*a*(cos(f*x+e)^2-4)*(a*(1+sin(f*x+e)))^(1/2)/(cos(f*x+e)^2+2*sin(f*x+e)-2)/(-c*(sin(f*x+e)-1))^(1/2)/c^4*
tan(f*x+e)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 105 vs. \(2 (42) = 84\).

Time = 0.28 (sec) , antiderivative size = 105, normalized size of antiderivative = 2.19 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{9/2}} \, dx=\frac {{\left (3 \, a \cos \left (f x + e\right )^{2} - 4 \, a\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{3 \, {\left (3 \, c^{5} f \cos \left (f x + e\right )^{3} - 4 \, c^{5} f \cos \left (f x + e\right ) - {\left (c^{5} f \cos \left (f x + e\right )^{3} - 4 \, c^{5} f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(9/2),x, algorithm="fricas")

[Out]

1/3*(3*a*cos(f*x + e)^2 - 4*a)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(3*c^5*f*cos(f*x + e)^3 - 4*
c^5*f*cos(f*x + e) - (c^5*f*cos(f*x + e)^3 - 4*c^5*f*cos(f*x + e))*sin(f*x + e))

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{9/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(9/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{9/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {9}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(9/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(3/2)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^(9/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 125 vs. \(2 (42) = 84\).

Time = 0.32 (sec) , antiderivative size = 125, normalized size of antiderivative = 2.60 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{9/2}} \, dx=-\frac {{\left (3 \, a \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 3 \, a \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \sqrt {a}}{6 \, c^{5} f \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6}} \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(9/2),x, algorithm="giac")

[Out]

-1/6*(3*a*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^4 - 3*a*sqrt(c)*sgn(cos(-
1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^2 + a*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*s
qrt(a)/(c^5*f*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^6)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{9/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{9/2}} \,d x \]

[In]

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(3/2))/(c - c*sin(e + f*x))^(9/2),x)

[Out]

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(3/2))/(c - c*sin(e + f*x))^(9/2), x)